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In 1903 Ernst Rutherford said that Biology is akin to postage stamp collecting.  As a physicist he was alluding to the lack of models and the ability to predict biological phenomena.


Goal: P(Phenotype|Data,Model)

m s ‘E”E@Eﬁwm];b
|

EEE : Parisss Phos
Gluean 31 OLU&F— Patmany, WA, DNA,
T Praisies
()
PRSP
B
(il s
'W‘".ﬂ'

nEg
o 4'"(‘ Glyealysin/
aliconoginm

i s bl
o &

[Eylles i ?\ j

WMﬁFI—FW\MHHﬂU

Qlpouplsts
Cyols

2


Presenter
Presentation Notes
Pred P  Need to consider diagnoses Predict skin cancer?

              Need to consider prediction of therapeutic treatments  both efficacy and side effects (unintended consequences)



Needs to fit the DOE  mission for OBER:  

ie  energy production  Are we looking at ways to add value to farmers that are dealing with commodities that are bringing in less money today than they did in 1980?

Carbon sequestration.  Can we engineer proteins that will deposit C into lignins that will end up in 2x4s and other long lasting materials or into  humic and folic acid in the soils through the roots of plants and soil micro organisms?

Can we engineer proteins that will Sequester heavy metals and radioactive isotopes and break these down?

Cetral Dogma


Discovery-Driven Data, Models and Computing
Resources for Predicting the Phenotype.

Data and Quality

Ancestry &
Environment

Models and Lack of Fit

Compute Resources

DNA

MRNA

Proteins

Biochemical
Networks
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Central Dogma provides a frame workd to develop a two dimensional landscape


Ancesiry and Environment

Data:

3 Pedigrees, Breeding Records, Progeny Performance Trials
& Family Histories, Clinical Records, Environmental Exposure

#8 10° - 107 records per trait in geographically distributed, heterogenous
repositories.

#® £~.05-5
Models:

FYy=XB + Zpn + ¢
Compute Resources:

3 For brute-force ML, RAM needs to accommodate data from
multiple sources and a few million records.
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Maximum Liklihood 

Lack of Fit
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Predictions frormn DNA Information
Data:

& Physical Maps, Linkage Maps and SNPs

3¢ Nucleotide Sequences

F8 1.6 x 1019 sequences in a few geographically distributed repositories.
#& Sequencing erros, ¢ ~.01; annotation errors ?

Models:
Fy=XB + Zun +Wi+e¢

8 Blast (seq; ~ seq; => function) ; s;

i In(qij/Pi Pj) [ A,

Compute Resources:

¥ 200K ESTs: 2 weeks, 16-node Linux cluster with 16 Gb RAM



Function assigned

based on sequence similari
to another sequence
with a

’ function assigned
pased on sequence similarity

/ Function assigned
pased on sequence similari
to another sequence

witha...

to another sequence
with a

Computerized stamp collecting



Predictions frormn DNA Information
Data:

3 Physical Maps, Linkage Maps and SNPs

£ Nucleotide Sequences

3¢ 1.6 x 1019 sequences in a few geographically distributed repositories.
38 Sequencing erros, & ~.01; annotation errors ?

Models:
Fy=XB + Zu +Wi+e¢

g6 Blast (seq; ~ seq; => function) ; s,= In(q;/P; P;) / 4,

ij
8 CASP (seq => structure => function)
Compute Resources:

8 Moderate sized clusters of commodity-grade processors.

Q2
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New Algorithms are being developed as a result of the biannual competition to predict protein structure

From these predicted structures it is possible to infer function from among a broad class of similar structures, but specific functions in the context of a specific biochemical pathway or network needs additional information.  
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Note active sites and how they change with change of one amino acid
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Understanding the Mecnhanisms of
Protein Folding

8 Will lead to an understanding of protein function in various
cellular environments

(Misfolding is known to occur and be responsible for serious diseases)

s¢Resulting in development of predictable diagnostics, novel
protein-based therapeutics, novel proteins for sequestering C,
heavy metals, and radioactive isotopes.



Understanding the Mecnhanisms of
Protein Folding
Experimental techniques are limited for relevant time scales,
thus there is a need for simulation of
¢ folding kinetics
¢ folding pathways

b force-field assessments

Allen et al. 2001. “Blue Gene: A vision for protein science using a petaflop supercomputer”.
IBM Systems Journal 40:310-327.

Levitt et al. 2002. “Modeling Across the Scales - Atoms to Organisms” Mathematics and
Molecular Biology VII. Program in Mathematics and Molecular Biology. Santa Fe, N. Mex.



Computing N 98 IS for Mlecnanism
]
ofeln

ec
Protein Folding

Time frame to simulate 10 sec
Time-step size 10" sec
Number of MD time steps 101
Atoms in a typical protein/water simu 3.2 x10°
Number of interactions in a force calc 10°
Instructions per force calc 10°
Total number of instructions 10%

Allen et al. 2001. “Blue Gene: A vision for protein science using a petaflop supercomputer”
IBM Systems Journal 40:310-327.
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If we assume the use of a petaflop/sec machine, then it would take 3 years to simulate 100 micoseconds…. A typical time frame for simulating the protein  folding pathways 


B
Predictions from mRNA and proteomic

clffelys
Data:
38 gene-chips, micro-arrays, bead-arrays (MPSS), proteomic arrays

¥ very sparse data, relative to biological time scales, snap shots of
average transcription from pools of similarly treated cells

3 104 - 10° genes per experiment; 104 experiments in geographically
distributed, heterogenous repositories.

#e~1-5

4 J;J
KW )


Presenter
Presentation Notes
Poor reproducibility

Sensitivity, ie power of ~ 

specificity, ie type 1 error 

Current analysis tools are based on simple clustering techniques.that provide some intuition for the biologists

Show Cluster analysis slide.  






Examples or data from
micro-arrays and 2 D gel protein arrays

[¢--anNaEavEaas

E\\e Edit Select Show Stack Image Process fnalyze DataBase Help

g0
' N 5 : -
0 o ¥ ST AN =
0000 S b ok
)00
Y ]
2O GO
100 0O
200
200
D00
DO e
JOou
o0
90
000
]
200
29
Q00 | |
)00
o9
® 0 Figure 17-8. Gels displayed using the FiveRamps color lookup table.
Qv 1 I/
‘| 71
LT



h c 20 doubiing tinme ratios

== 1
=Rk
1. &85
RS
L3
Zne

=2 HX

56831
genes

FPLSE REB0OECMMAL PROTEIM B3

FALSE RBOEChMAlL PROOTEIM BB

FALE12 ABEOS0ORAL FROTEIM =132

B LSA, RIBOS0REL FROTEIM S&

R L2 RIBDEO AL, FPROTER L33

FE2A PEOTEIN PHOSPHAT ASE 26 BEG. 2 OETA

PR FTHAE TR I DR FEES PHATE. O MY DSl s s 2
A1 ELTRSA TRON Fas TOR 100 FHA,
A1 ELDRSETROMN Fas TR 100 FHA 1

A LA RIECSOAL PROTER L41

BTF3 AASC TRAWSCRIPTIIN FACTOR 3
RP L3 RIBOSORMAL PROTEIM LA

PR ICAETE SPrAL WIS AR ST RO HY
FESFET FIEAT SO0 2 R T s e
RELPD REOSCMAL PRCTEIN FO

RELET RIBCSOMAL PROTER LT
EEF1ET ELONGATION FACTOR 1-EETA
RALITA RIBIS0MAL FROTEIM LZ7A

R LA RIBOSOeAAL PROTER L3

R 815 REI0SCAL PROTEIM 8135

R L) RIS ORAL PROTEIN L

L T LT N P A TOR 418

EIF43 MITLT DN FACTOR 4B

FPL3 FIBDEDMAL PFROTEIN L3

ETAT2

FAL20 RIBDS0MAL PROTER L9

PACPAS p 1050 T8

RFLEAA RIBOSOMAL FROTEIM 5348
F Tl PHEOT HY RS AP,
CEMPCT CENTROMERE PROTEIM &1

Rt B JSHAAMSMF RELATEDG

H A0 RHs HELCASE

CCREAS CYCLIN &2

PAADIA. T PASATE-LIKEE 1

LB HED LR ATIN CORNERATIMFG EMZYRE
CTCF TRAMSCRIPTEMAL RE PFRESSOR

T FE s TOPCHED RESE 1| H1LPHS

TOPES DA TOFOIECMERGEE | &A1PHE

PAKIGT AMTESEH

COCINT L DIWISEDN CYCLE 253

PEPR A P ROTE N P WTASE 2 GAT. ALFHA
E1B-AF% E18 822D 0IATED PROGTEIN

h M- A

RFC4 FLICATICN FACTOR C

SCCF SOCH N 1 AL P

WIEE1 PROTER KIMNASE HOROL 010G

el proliferation cluster

L
r


Presenter
Presentation Notes
Needs  Data Acquisition:

Note  original images are in Red Green and yellow

Image processing (>2 channel)

Integration with sequence DBs



Note Clusters


VxInsight
(SNL: George Davidson)

Figure 4: Multi-resolution exploration
with detail on demand.



Predictions frorn Expression Arrays

3 gene-chips, micro-arrays, bead-arrays (MPSS), proteomic arrays

38 very sparse data, relative to biological time scales, snap shots of
average transcription from pools of similarly treated cells

& 104 - 10° genes per experiment; 104 experiments in geographically
distributed, heterogenous repositories.

¥$ec~1-5

Models:
BYy=XB + Zu +Wi+Tv+eg
38 Support Vector Machines

Compute Resources:

# RAM needs to accommodate data from multiple arrays,

multiple experiments, GenBank, SwissProt, Kegg, F?lff';\m,
PathDB
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swissprot �=========�Release 40.7 of SWISS-PROT contains 103370 sequence entries, comprising�38071553 amino acids abstracted from 93529 references. �KEGG�====�146 Pathways�79 organisms�328344 genes�46107 enzymes (here: more relevant than genes)�3829 EC numbers�9560 compounds�2427 compounds with links to pathways�Genbank�=======�14976310 sequences�PathDB�======�15029 Proteins�26576 Steps�1906 EC Numbers�127 Organisms�267 Pathways�










Pathways and Networks

Data:

& expression arrays

#& cross-link arrays of protein-protein, protein-DNA and protein-RNA
interactions.

¥ Very sparse data, i.e., snap shots at discrete time/treatment/tissue
samples

#8 geographically distributed, hetoerogenous repositories

Models:

8 Hypothetical networks of nodes and edges, e.g., Baysian
Networks

Compute Resources:

& Similar to “radiation transport” simulations?

Q2



Boolean, Fully Connected Pas

Boolean, K Connections per Gene 2%[log(N)]

Boolean, K Connections per gene based on linearly  K[log(N)]
separable functions

D’haeseleer, 1997. Data Requirements for Gene Network Inference
http://www.cs.unm.edu/~patrik/networks/
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If we assume the use of a petaflop/sec machine, then it would take 3 years to simulate 100 micoseconds…. A typical time frame for simulating the protein  folding pathways 
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Digital Cell  Colin Hill


A Need for Integration

38 The data are located in hundreds of geographically distributed,
heterogenous repositories.

#8 Analysis tools (implemented algorithms) are likewise widely
dispersed.

2 Novel algorithms will be developed redundantly by independent PI.

& High performance computing resources are limited, but
geographically distributed.

N
IS
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This is going to be one of the more difficult

Unlike high energy physics, high throughput biology is not concentrated in a few labs.  

Technologies are becoming commodity priced very fast
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Link of known functions on a  network of proteins.  The network is proposed based on evidence of protein - protein interactions.  


Integraiion Taxonormy

Data Oriented Software Oriented

i e Data Warehouse * Web based (hyperlinks)

ﬁ *Federated Databases ~ *Component based
e proprietary
B0 eMultiple Databases « enterprise

N
o))



Complex datanase and sofiware

#Rigidity
gFragility

$gEXpense

()

Software invariably lasts
longer than you think (Y2F

N
-\|



Loose Coupling Architecture

$Tight packaging of data and application allows context
sensitive display of information.

$Plug and play architecture emphasizes communication
between components via fundamental biological concepts.

$Separate components allow parallel and independent
scientific advancements.

N
Q2
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Integrated biological data types with an Integration Platform.
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Databases and analysis

servers

s

Client

/

\ P 5. <class> data...

1. Register <name,URL,cEs§
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Directory Server
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Discovery-Driven Data, Models and Computing
Resources for Predicting the Phenotype.

Data and Quality Models and Lack of Fit Compute Resources

Large volume _ :
Ancestry & Highly distributed Linear Models Commodity Clusters
Environment low error VBRSSO
Huge volume Linear Models with a large LOF _
DNA Few repositories Annotation with potentially huge Commodity Clusters
very low error L OF
Huge volume o Linear Models with a LOF
MRNA Thousands of repositories SVM ? Large RAM
Multiple Platforms
high error
Huge volume
) Hundreds of repositories Protein Structure Predictions Commercial SPM
Proteins Multiple Platforms Protein Folding Mechanisms Blue-Gene +
high error via simulation modeling?
) i Very little experimental Baysian Networks Commercial SPM
Biochemical data Radiation Transport and Blue-Gene +
Networks other simulation models?

Sy
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DISCOVERY-DRIVEN BIOLOGICAL
RESEARCH
IP:

DISCOVERY Drug Targets,

IDEA Gene Targets,
Diagnostics,

Software Systems,

Analysis Services

CONTROLLED EXPERIMENT
Massively Parallel
Data Collection

DATA INTERPRETATION:
Analyses, Predictive
Models,

(LIMS, Image Processing) )
/ Systems Biology
IP: /
Technology DATA MANAGEMENT:

Platforms Store, Retrieve,
Integrate
IP:

Software Systems
Information Services
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